MODERN TENDENCIES IN THE DEVELOPMENT OF VISUALIZATION TOOLS FOR PARALLEL COMPUTING SOFTWARE

V.L. Averbukh, M.O. Bakhterev, P.A. Vasev, A.P. Urosov

As far as one can see it is naturally to use visualization tools, both for needs of parallel programming and presentation of ready-made parallel software. In the mid 90s of the 20th century, many systems for software visualization of parallel computing have been developed. These systems one may divide into the following:

· Visual programming tools;

· Visual correctness debuggers;
· Visual performance debugging and tuning tools.

Judging by our observations, last years the intensity of development in the field of Software Visualization declined considerably. As far as can be observed by current publications, there are no new visual parallel programming tools, also there are no new universal visual correctness and performance debuggers. However debugging tools for distributed environments and for hybrid (including as CPU’s as graphics processors) computing are developed.

The functional scheme of debugging tools developed last years is approximately following – during computing data about work of processes are gathered. Next these data are used for construction of views, for example, the call graphs or a data-flow graphs.

Note that the visualization of real parallel programs leads cumbersome and often not interpretable displays.

Methods for solving this problem exist. For example, techniques of semantic zooming are actively used to reduce and display visual blocks that present portions of a program. One may use ideas of an “infinite screen” and/or “flying over the screen”. Visualization techniques based on virtual and augmented reality also may be used during creating and debugging parallel programs.

However, all these techniques rather are palliatives because of arising problems with as process of data display as with the interfaces usable for programmers. Also using of those or other visualization metaphors for parallel computing has very limited importance. Software developers use to some extent visualized toolkit, but almost all parallel programs are written in the traditional, indeed, the text mode.
It appears that solutions should be sought on how to create new methods of parallel programming. In this connection, one may consider RiDE - the methodology and toolkit for distributed and parallel programming based on the data flow model. RiDE uses system (develop) and visualization metaphors from the first design ideas.
The RiDE is based on technology of dynamic data flow graph generation described by using rules that represent the nodes in the graph arcs between which are the names of the compute data blocks. The current implementation is based on the stores responsible for data storage and analysis of the current set of rules to find ready for activation. That is, is such a rule, the computational procedure which can be run on the basis of availability in the storage required for this run.
To visualize the execution parallel programs written for the RiDE, a prototype visualizer RideVis was developed. As the main visualization entities storage, data, processes, number of processors in the system are used. And the events underlying the visualization are the following: adding/removing data in, startup/shutdown processes, reading/writing data in the storage. By quantity of the read data displayed round processes, and also on a storage condition, it is possible to draw the first conclusions on an overall performance of the programs written for RiDE system. The visualizer provides several dynamic views to represent execution of RiDE system. These views may be used for illustrative visualization.

Further plans include the development of the tool for the analysis of a correctness of the program data flow. The dataflow graph, which knots represent the rules started after activation, is dynamically developed during computing. If during computing thousands of rules are activated, one can analyze the correctness of graph structure only by means of visualization. The visualization system will include some debugging tools and tools for statistical analysis of the effectiveness of RiDE programs. Also a basic tool for visual programming for RiDE is under consideration.
