
The analysis of visual parallel programming languages

Vladimir Averbukh1 and Mikhail Bakhterev2

 1 Krasovskii Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences
Yekaterinburg, Sverdloskaya oblast 620990, Russia

averbukh.vl@gmail.com

 2 Krasovskii Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences
Yekaterinburg, Sverdloskaya oblast 620990, Russia

mike.bakhterev@gmail.com

Abstract
The paper is devoted to the analysis of state of the art in visual
parallel programming languages. The brief history of this domain
is described. The diagrammatic imagery of visual languages is
analyzed. Limitations of the diagrammatic approach are revealed.
The additional type of visual parallel programming languages
(action language) is described. Some problems of perception of
visualization for parallel computing are considered. Some
approaches to the evaluation of visual programming languages
are suggested.
Keywords: Visual parallel programming languages;
diagrammatic languages; perception of visualization.

 1. Introduction

In the late 70's - early 80’s of the last century, Visual
Programming was formed as a new independent domain.
The researchers and practitioners put high hopes on Visual
Programming. They believed that visual way to describe
programs might simplify the process of programming. It
was noted that pictures may map objects of the real world,
whereas text representation may only refer to program
objects. In addition, multidimensionality of graphics may
increase informativeness in comparison with a one-
dimensional text flow by using, for example, shapes, sizes,
colors, textures, directions or distances. Therefore, Visual
Programming should be more accessible to thinking of
novice programmers. Visible and compact techniques of
programming had to reduce the abstraction level of
algorithm presentations. The usage of visual metaphors
basing on natural figurativeness was assumed. For more
serious cases of programming such graphic representations
as finite automata, data-flow graphs, state transition
diagrams, Petri Nets, etc. should be used. However
nowadays disappointments take place. The authors of the
well known among programmers book “Design Concepts
in Programming Languages” say:

'It is also possible to represent programs more
pictorially, and visual programming languages are an
active area of research. But textual representations enjoy
certain advantages over visual ones: they tend to be more
compact than visual representations; the technology for
processing them and communicating them is well
established; and, most important, they can effectively
make use of our familiarity with natural language' [1].

Visual programming for parallel computing gives
hopes to be more useful and effective. And there are many
examples of interesting solutions in this domain. But visual
parallel programming languages remain more research
projects then real tools. Below we’ll discuss our approach
to the situation with visual parallel programming
languages. Our analysis should help reveal perspectives of
the future development of this domain.

2. Visual Programming

The first realizations of Visual Programming
environments have been based on the so-called executable
graphics. In this case algorithms may be described in the
visual form and visual programs should execute on
computers directly without translation into common (text)
programming languages. Visual languages should include
graphic representations for all program elements to
describe both the control and data structures. It seemed
that through visual techniques to design programs (for
example Nassi-Shneiderman diagrams) programmers may
refuse from the stage of coding. (For example there is the
idea – “Algorithms without programmers”.) It was
assumed that the difficulties of novice programmers were
successfully handled by means of animation and they can
correlate the static text of the program and the process
which was generated by this text. Diagrammatic languages
were the basis of many visual programming environments
developed in the 80's and 90's.

mailto:mike.bakhterev@gmail.com

Diagrammatic languages are characterized by well-
defined, formalized dictionaries consisting of a relatively
small number of elements. Also, as a rule, the spatial
syntax is strictly defined. That is the spatial layout of
diagram elements and their positions relative to each other
are precisely specified. The automatic placements of
diagram elements were realized in some programming
environments. Work with the environments basing on
diagrammatic languages, as a rule, implements according
to the common plan. Users employ a system of menu
consisting of diagram elements and graphic templates.
Thus the diagram step by step is depicted on a screen.
Then filling in the appropriate text boxes of graphical
templates are occurred. Really programming systems
basing on diagrammatic languages use hybrid - text and
graphic techniques. There are many examples of using as
the main metaphors flow charts and Nassi-Shneiderman
diagrams. (These diagrams use the presentation of control
flow.) Also there are many examples of visual
programming environments basing on presentation of data
flows. In this case simple structures of graphs facilitate
modular design and allow applying diagrams at all levels
of program descriptions. There is no need to use special
language features to link individual modules. Examples of
visual language based on finite automata, Petri nets, HIPO-
charts met less frequently. In the 90-ies, at the next stage of
development of visual languages, the systems on the basis
of UML diagrams have appeared. Let's note some
limitations of a diagrammatic approach to visual
programming.

Means of graphical representation of data structures
usually are absent in diagrammatic systems based on the
concept of control flow. Everything related to the data
must be described in plain text. Many systems also require
at some stage to detail parts of the program. Therefore it is
necessary to do inserts on plain-text of programming
languages. That is why all similar systems demand
extensive volume of text input. The use of data flow graphs
entails similar problems, such as: the lack of high-level
control structures, leading to increased complexity and
entanglement of diagrams, the only way to represent the
semantic information exists. This is using of the names of
nodes and arcs. Also usually the scope of the systems
based on other diagram metaphors, is strongly limited. To
resolve the problems arising from the use of data flow and
control flow diagrams, mixed diagrammatic metaphors
were used. These metaphors are combined, such as data
flow diagrams and Petri Nets. But only a few examples of
these decisions took place.

Systems on the basis of iconic languages often use
expanded models of data flows. In this case, in nodes of
the graphs pictures are placed. The picture as a rule
represents previously developed program functions for
data processing. There are interesting examples of iconic

languages on the basis of natural imagery, quite accurately
depict the meaning of a function. Experience of iconic
programming languages played a role in graphic (more
precisely iconic) interfaces. However, iconic languages did
not become a frequent practice in modern programming.

Note, that there are examples of 3D visual languages
using abstract imagery but implicitly one may relegate this
type of visual languages to a class of iconic languages.

Data flow graphs, as well as control flow graphs,
enough easy to animate. However, there are only a few
systems with animated executable graphics. There are
some examples of realization ideas of executable graphics
in visual variants of “normal” programming languages.
These examples include functional programming
languages. (For functional languages it is very difficult to
find adequate techniques of visualization of the main
concepts.)

So, in spite of all their limitations, diagrammatic
languages are the most popular type of visual programming
languages. Visual languages built into some mathematical
packages are just diagrammatic (dataflow) languages.
Microsoft Visual Programming Language (VPL) is
relatively recent example of classic diagrammatic language
on the basis of data flows. One may remember that visual
meanings based on diagrammatic imagery play an
important role in such programming environments as
Visual BASIC, Delphi, etc. However, in this case, visual
programming means not quite (or not the same) that
originally was meant in the 80th years. Now this is not a
system executable graphics that seemed as a goal of visual
programming environments in 80-ies. In these well-known
environments of visual programming a key role plays not a
depiction of program control flows or data flows but the
depiction of interactive behavior of an application
program.

3. Visual Parallel Programming Languages

The first systems based on visual parallel
programming languages have appeared almost at once after
sequential analogues earlier 80-ies. Depictions of
parallelism were very limited in the beginning. Those parts
of program graphs (for example data flow graphs), that,
according to a programmer, may be parallelized, were
marked in some way (usually double or heavy line) [2].

Thus the early environments of this type had no
explicit means for a visual support of entities of parallel
programming associated with message passing or process
creation and management. At the following stage the
depictions of parallel program structures were included to
visual languages. In some visual languages the simple set
of icons were used to represent constructions of parallel
programming languages. (For example VISO – visual

realization of parallel programming language Occam [3].)
The important direction in visual parallel languages is

the diagrammatic languages which are based on a message-
passing paradigm. Such languages were actively developed
in the 90th years and were similar to traditional visual
languages. Sequential sections of programs were depicted
by traditional diagrammatic techniques for control flows.
There is the almost full realization of message-passing
means in visual language Grapnel (including dynamic
process creation and destruction) [4].

Also the tendency to design so-called “concept-
based” visual parallel languages was revealed. In these
cases researchers and developers suggest the main
concepts to describe parallelism and conformably parallel
programming.

A typical example of such (early) visual languages is
CODE [2]. Visual programs had used data flow graphs
contained nodes-processes and arcs to connect ports of
these processes. Programmers after depicting of the
general scheme have to describe processes and their input/
output ports in text form and to define conditions of node
executions.

The interesting example of an early concept-based
language is Phred [5]. Phred is a visual parallel
programming language in which programs can be statically
analyzed for deterministic behavior. The developers of
Phred consider that nondeterministic computations are a
significant problem in parallel programming. Phred
addresses the issue of determinacy by visually indicating
regions of a program where nondeterminacy may exist. A
Phred program is composed of a control flow graph, a data
flow graph, and a set of node interpretations. A Phred
support environment allows a software designer to create
Phred programs, to statically analyze them for
determinacy, and to interpretively execute them.

The interesting concepts of parallelism descriptions
are the basis of visual programming language Visper [6].
One of them - Process communication graph (PCG) – is
used also in some related visual systems. The Process
communication graph combines control flow graphs and
data flow graphs to the united visual formalism based on
the concepts of space-time diagram and concurrency map.
These concepts earlier were used as debugging and
efficiency tuning tools.

A visual, object-oriented parallel programming
language Vorlon [7] realizes the parallel object-flow
execution model. This model draws upon both object-
oriented and dataflow models. As such it is able to manage
both parallelism-oriented aspects, like synchronization
with dataflow-like constructs, and problem domain
complexity through types and type interrelations.

The next visual language for parallel, object-oriented
programming is HiPPO (High Performance Parallel
Object-oriented) [8]. In HiPPO the data flow model is

changed and based on the flow of object references.
There is one again visual parallel programming

system – VisualGOP [9]. This system is realized basing on
graph-oriented programming model which aims at
providing high-level abstractions for configuring and
programming cooperative parallel processes. With GOP,
the programmer can configure the logical structure of a
parallel/distributed program by constructing a logical
graph to represent the communication and synchronization
between the local programs in a distributed processing
environment.

Note that new visualization techniques are developed
for the new concepts of parallel programming. The task
was set to develop all-in one visual programming systems.
These systems have to provide all development cycle and
include visual means of parallel programming proper,
debugging and performance tuning and debugging realized
in frameworks of a common mental model. One can even
say that forming of this mental model of functioning of
parallel programs is the main task of design of these visual
parallel programming environments. Quite another
question is the task solved and even is this task at hand at
modern state of the art. In itself techniques of program
development and depiction in these environments are
similar, despite of using of various approaches to the
parallelism description. A programmer develops the
general scheme of a parallel (or distributed) program, and
then concretizes it by depiction of concrete details.
Majority of systems have diagrammatic imaginary. The set
of graphic elements is traditionally limited and, as a whole,
is simplified, even if any icons are used. Animation for
description of processes dynamics is not used.

We have analyzed a set of visual parallel
programming languages. (See also the Taxonomy for
visual parallel programming languages in [10].) As a rule,
their visual dictionaries base on different types of charts
and/or diagrams. These dictionaries are characterized
above all a limited set of visual elements. Their semantics
are set by strict senses and syntaxes are described by
precise rules of element placement on the screen.

Note that visual languages using control flows in
general have no any sense, additional to traditional (text)
programming languages. In diagrammatic systems based
on the concept of control flow, usually there are no graphic
means to represent data structures on programs. So these
structures often must be described in plain-text form. All
these systems need extensive volume of text input. Use the
data flow graphs involves a similar problem - the lack of
high-level control structures, leading to diagram
complexity and complication, the lack of means to depict
non-trivial data structures, etc. [11], [12]. As already noted
there is the almost only way to describe the semantic
information – to use names of nodes and arcs. Systems
based on other diagram metaphors have very limited

scope.
Unfortunately, some of the ideas that are implemented

in visual programming languages reflect the previous level
of development. Limitations of the “diagrammatic”
dictionary prevent from solving problems arising in
connection with the development of modern programming
languages.

Let's consider the example. Means of describing the
procedures for access to the data elements are well
developed in dynamic languages and compiled languages
of last generation. In particular these languages make
possible using in operator expressions accesses to dynamic
and associative arrays; to lists; to elements of row partition
by regular expressions, and in some cases even to entries
of data base tables. In most diagrammatic language
mechanisms of data addressing don't exist in program
structures. Instead of these mechanisms the abstraction of
arrow (-> <-) is introduced. Arrows connect the outputs of
one of the operators (or other software design) to the
inputs of another. However the Arrow isn't a metaphor of
access to elements of data structures because it does not
involve the formation of values outside of the connection
between the two operators. That is one of the main data
properties violates – to exist when there are no operations
on them. Thus, in the majority of visual languages the
programmer must deal with, though with basic but implicit
access to the data values (not even to the own data). In
these languages well nigh there are no advanced facilities
of describing references to computing results. A little
example of such reference is a node in an orgraph
representing an operator. A node may be depicted in the
form of 3D or (more often) 2D object, for example, a
polygon with a line coming out of it, symbolizing a result.
And other arcs included to other nodes-operators are
connected to this arc. This approach allows independently
defining operands for operators which usually are N-ary in
these systems. However local changes in the program can
demand global editing of communications in its visual
representation. For example, when the value received in
one group of operators is necessary to process jointly with
the value from another, spatially remote. In that case in a
language with explicit access to the data (especially the
imperative one) one may do a few local patches a program
text: to keep the required values in the data structure of the
program, adding several expressions into the group of
operators separated by the code, and then turn to them,
when they need a co-processing. Note that the other
situation takes place in data flow iconic languages. In these
languages firstly one has to select the group of objects
(operands) and then the operations on it. That is, the
language is intended on the explicit indication of data over
which it is necessary to execute an operation.

Of course, many factors affect the popularity and
breadth of using of one or another programming tools. But

the presence in the programming language sophisticated
facilities for connecting between an operator part of an
expression and data does this language more useful. These
tools may play an important role in simplifying of parallel
programming.

In the following (from the second half of the 90s) an
effort was made to break “diagrammatic” deadlock by
means of entering dynamics into the process of
programming. There are projects of visual parallel
programming systems where there are attempts to visualize
as well as parallelism, and dynamics of processes.
Conceptually in these systems one may directly depict the
modeling objects as it is usual for the application. It
provides a direct mapping of visual specifications into the
program. Visual images should represent higher-level
mathematical objects. (See, for example, VIM Language
[13] or to some extent “CYBER-FILM” [14].)

Visual interface that specifies initial values for the
applied computing system also may be considered as a
specialized visual language for parallel programming. For
example, the project ASSY [15] aims to develop a
metasystem that supports the development of problem-
oriented programming systems. In this system the means to
solve the problem of the interaction of the flow of rarefied
plasma are realized. In such environments, nothing but the
main entities are visualized. In case of ASSY, these entities
are high-level concepts of a certain computational method.

Also there are serious problems of visual
representation, human perception and interpretation in
connection with visualization of parallel programs. These
problems are common for visual programming, visual
debugging and performance tuning. Visualization of real
parallel programs and data leads to cumbersome and often
not interpretable pictures.

No matter how big the screen is, but the volume of
visual data required to represent a serious parallel and/or
distributed programs will exceed its capabilities. Practice
shows that even small complication of the program
structure leads to maze patterns, similar to puzzles on
complexity of interpretation. A possible decision of the
arising problems is connected with using 3D graphics and
particularly virtual reality and augmented reality
environments. Just these means should provide the most
effective use of tridimentionality and dynamics.
Nevertheless the serious problem there is an adequate
interpretation of extremely large volumes of visual data
with very complex structure.

4. Conclusion

Experience in the development and use of visual
programming languages shows that their successes are
associated with specialization. (See for example well-

known LabView [16].) Universal visual programming
languages could not overcome the level of academics
studies. The same situation was found in visual parallel
programming languages. The interest in visual
programming parallel language wanes in gradual mode.
New developments (as of 2010-th) are appeared more and
more seldom, although there is no question of the complete
cessation of activity in this field of research. Let us try to
understand the reasons for such situation.

From the very beginning of the development it is
considered that the main goal of Visual Programming is to
reduce mental efforts of programmers [17]. But is drawing
of detailed program diagrams easier than a detailed textual
programming? Note that detailed program depicting may
be considered even as a sophisticated pictographic script.

Visual languages and visualization in general, are
used to depict objects and their attributes. The basic
communicative potentialities of concrete visualization are
demonstrated on representation of qualitative and
quantitative properties of objects, depiction of
relationships between objects and processes associated
with these objects [18]. Therefore, as a goal of visual
programming one may consider the possibility of
presentation of data structures and data elements,
supporting of representation of program dynamics and the
possibility of program generalization.

One may consider another goal of visualization in
parallel programming – to support analysis and exact
interpretation of programs during the process of their
development. Then the evaluation of visualization should
be linked to the possibility of interpreting images, and
interpretability will be an important measure of the quality
of visual languages.

Visualization either maps pre-existing mental models
of users (programmers in this case) or forms them again.
(Sometimes a combination of both processes takes place
almost simultaneously - that is on the basis of pre-existing
mental picture a new one is built.) This yields one again
quality criterion of visualization in visual languages - the
correspondence of visual languages and the existing
programmer mental models. On our opinion attempts to
create the new models of parallelism made in so-called
conceptual languages, are not mapped logics of
development of programming languages. On our opinion at
this stage the auxiliary means of a parallelizing support
may be more useful.

The very interesting and productive idea, to depict all
aspects of message-passing interaction, realized in Grapnel
[4] have no the further development. As it seems there is
no large need in depiction of parallel programs. Probably
this is due to the fact that in many case the effective
parallelization is reached by means of modern compilers or
other tools for automatic parallelization. And more
complex problems are solved through new languages, for

which the visual representation of abstract concepts not
found yet.

Thus, the development of a visual programming for
parallel computing has faced a number of challenges
related to both fundamental issues of visual description of
modern programming languages entities, and the
perception of large amounts of visual information. The
visual languages for parallel programming have not
become the real tools for professional programming. One
of the reason is connects with the limitations of
diagrammatic techniques. We will continue our research
and development. The next step will be a visual language
to support the new paradigm of parallel programming.
Problem solving should be sought through searching of
fundamentally new methods of parallel programming,
including the ability to use metaphors and visualization
design that may support adequate mental models.

Acknowledgments

This work was supported the Program “Algorithms and
Software for Supercomputer Systems” of the Presidium of
Russian Academy of Sciences (project No.12-P-1-1034 of
UB RAS).

References
[1] F. Turbak, D. Gifford (with Sheldon M.A.) “Design Concepts

in Programming Languages”. Cambridge (Massachusetts).
The MIT Press, 2008.

[2] P. A Newton “Graphical Retargetable Parallel Programming
Environment and Its Efficient Implementation”. Technical
Report TR93-28, Dept. of Computer Sciences, Univ. of
Texas at Austin, 1993.

[3] M.S. Al-Mulhem “Concurrent programming in VISO”
Concurrency: Pract. Exper. 2000; 12. Pp. 281-288.

[4] P. Kacsuk, G. Dozsa, T. Fadgyas “Designing parallel
programs by the graphical language GRAPNEL”.
Microprocess . And Microprogramm. 1996, V. 41, 8-9. Pp.
625 - 643.

[5] A.L. Beguelin, G.J. Nutt “Visual parallel programming and
determinacy: A language specification, an analysis technique,
and a programming tool”. Journal of Parallel and Distributed
Computing, 22(2), August 1994. Pp. 235-250.

[6] N. Stankovic, Kang Zhang “A distributed parallel
programming framework”. IEEE Transactions on Software
Engineering. Vol. 28. No 5. May 2002. Pp. 478-493.

[7] J. Webber, P.A. Lee “Visual, Object-Oriented Development
of Parallel Applications”. Journal of Visual Languages &
Computing Vol. 12, Issue 2, Pp. 145-161.

[8] P.A. Lee, C. Phillips, P. Watson “Final Report: High
Performance (Parallel) Object-Oriented Software Systems
(HiPPO)” http://www.parallelism.cs.ncl.ac.uk/projects/hippo/
FinalReport.pdf

[9] Fan Chan, Jiannong Cao, Alvin T. S. Chan1 and Kang Zhang
“Visual programming support for graph-oriented
parallel/distributed processing”. Softw. Pract. Exper. 2005;

35. Pp. 1409–1439.
[10] P. A. Lee, J. Webber “Taxonomy for Visual Parallel

Programming Languages”. Technical report series.
University of Newcastle upon Tyne, Computing Science,
2003.
http://www.cs.ncl.ac.uk/publications/trs/papers/793.pdf

[11] Philip Cox, Simon Gauvin, Andrew Rau-Chaplin “Adding
Parallelism to Visual Data Flow Programs”. SoftVis '05
Proceedings of the 2005 ACM symposium on Software
visualization. Pp. 135-144.

[12] Philip Cox, Simon Gauvin “Dataflow Visual Programming
Languages”. VINCI '11 Proceedings of the 2011 Visual
Information Communication - International Symposium.
Article No. 9.

[13] N. Mirenkov “VIM Language Paradigm”. Proceeding of
CONPAR-94 - VAPP VI International Conference on
Parallel and Vector Processing. J. Kepler University of Linz.
Austria. September 6-8 1994. (Lecture Notes in Computer
Science) Springer-Verlag. Berlin. 1994. Pp. 569-580.

[14] R. R. Roxas, N. Mirenkov “Cyber-Film”: A Visual
Approach That Facilitates Program Comprehension”. Int. J.
Soft. Eng. Knowl. Eng. 2005. V. 15. N6. Pp. 941-973.

[15] V.A. Vshivkov, M.A. Kraeva, V.E. Malyshkin “Parallel
Implementation of the Particlein-Cell Method”.
Programming and Computer Software, 1997, V. 23, N.2. Pp.
87-97.

[16] http://www.ni.com/labview/
[17] S-.K. Chang “Visual Languages: A Tutorial and Survey”.

Visualization in Programming. (Lecture Notes in Computer
Science 282). Berlin. Springer-Verlag. 1987. Pp. 1-23.

[18] William J. Bowman “Graphic Communication”. New York.
Wiley, 1968.

Vladimir L. Averbukh is the head of the Computer Visualization
researcher's section in Krasovskii Institute of Mathematics and
Mechanics, Ural Branch of the Russian Academy of Sciences.
He’s also the associate professor in Ural Federal University. His
primary research area is computer visualization, focusing on
theoretical problems of interactive visualization. Averbukh has a
PhD in computer science.

Mikhail O. Bakhterev is the researcher of System Programming
Department in Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences. He’s also the
assistant professor in Ural Federal University. His primary
research area is Software Engineering for parallel and distributed
computer systems.

http://www.cs.ncl.ac.uk/publications/trs/papers/793.pdf

