
Visualizing a Supercomputer: a Case of Objects Regrouping 

V. L. Averbukh1,2, A. S. Bersenev1, M.A. Forghani1,2, A. S. Igumnov1, 

D.V. Manakov1, A. A. Popel1, S. V. Sharf 1, P. A. Vasev1  

vasev@imm.uran.ru 
1N.N. Krasovskii Institute of Mathematics and Mechanics of the Russian Academy of Sciences, Ekaterinburg, Russia; 

2Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russia; 

In the paper we present the situation which had required visualization of a large amount of non-trivial objects, such as 

supercomputer’s tasks. The method of visualization of these objects was hard to find. Then we used additional information about an 

extra structure on those objects. This knowledge led us to an idea of grouping the objects into new generalized ones. Those new artificial 

objects were easy to visualize due to their small quantity. And they happened to be enough for the cognition of the original problem. 

That was a successful change of point of view. As a whole, our work belongs to a high-performance computing performance visualization 

area. It gains valuable attention from scientists over the whole world, for example [1-2]. 
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1. Introduction. The environment 

In high-performance computing (HPC), a typical program 

consists of many processes running simultaneously on a set of 

computing nodes. Typically, those processes communicate with 

each other, for example to interchange with partial results. Aside 

from that, processes perform read and write of data placed on 

external storage. This data may be a program's input, output, or 

intermediate values. 

In Krasovskii Institute a supercomputer named Uran uses  a 

dedicated file server as external storage. The server contains an 

array of disks attached using RAID. The server is connected to 

computing nodes using a dedicated network and is accessible via 

a network file system (NFS) protocol. HPC programs access 

user’s files via a computing node’s local file systems, while 

physically files are located on external storage. 

During supercomputer operation, we observed one problem 

in a long time span. File operations with the storage had become 

occasionally laggy. For example, the creation of a zero-byte 

length file was performing for up to 10 seconds and more. This 

situation lasted for a few minutes about 1-2 times a month. 

To investigate the problem we started to collect statistics. We 

started probing each computing node of the supercomputer at 

every 30 seconds for the following data: 

- count of NFS read operations performed by the node since 

the last probe, 

- count of NFS write operations, 

- NFS traffic amount of the node, 

- other information, including CPU load and memory usage. 

Then we analyzed the achieved data and came to the 

conclusion: file storage lagging correlates with a total count of 

NFS operations per second (IOPS) performed on that storage, 

especially when IOPS exceeds some limits. It was regardless to 

read or write direction, as well as to traffic amount. The details 

of this conclusion have been reported in [3]. 

Accordingly, we made a hypothesis: spikes in NFS IOPS are 

generated by a stable set of concrete supercomputer programs. 

Thus, if we determine these programs, we might re-factor them 

and so eliminate the spikes, and so eliminate the file server lags.  

To check the stated hypothesis we decided to visualize the 

collected data. The final target for visualization was defined as: 

allow to visually find the programs which cause NFS spikes. 

2. Our way and the problem 

First of all, we were able to visualize the existing data of per-

node NFS activity. Here the term “NFS activity” means a count 

of NFS operations (both read and write) accumulated during a 

probing period. It is shown in figure 1. 

The view is the following: 

1. The time goes from the bottom to the top (covering the 

range of one month). 

2. Each blue column corresponds to one computing node of 

a supercomputer. 

3. The width of a node’s column is determined by the 

function nfs_activity(node, time)→int. The more activity a node 

had at a specified time moment, the wider is its column. 

Fig. 1. NFS activity of all nodes of the Uran supercomputer 

during one month. “Fields” are a node types. 
 

The figure contains three interesting regions, which are 

empty — A, B and C. The A region is empty due to error in 

collecting data: it was suspended on some nodes. The B region is 

empty due to maintenance for those nodes for a few days. The C 

region is a set of nodes under long-time maintenance. 

Although the obtained view seemed interesting, it doesn’t 

answer the predefined question of finding programs with NFS 

spikes. So we continued our visualization efforts. 

When an HPC program is launched, a set of parallel 

processes is started on computing nodes. We will call such a 

launch as a task. At the Uran supercomputer, the Slurm 

scheduling system is used to create and assign a task's processes 

to hardware computing nodes.  

Slurm provides historical information on such assignments 

that determines: which tasks were running on which nodes at 

which times. Each task record includes: 

– user id, 

– program name, 

– nodes list, where the task's processes were assigned to, 

– the start time and the finish time of the task. 

This information allowed us to recalculate NFS activity from 

per-node to per-task basis. Thus we achieved a function 

nfs_activity_t(task, time)→int which returns NFS activity of the 

given task at the given time. 

However, we felt it to be unusable to visualize the tasks “as 

is” because of their amount. For example, the Uran 

supercomputer executes about 100 000 of tasks each month. 

Actually, we even had not found any ideas on how to do that. 
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Alternatively, there was an idea – to group tasks into 

programs, and try to visualize them. Unfortunately, it turned to 

be technically impossible due to the following. Slurm provides 

corresponding program name for each task, but those names are 

not stable. For example, suppose there are three tasks. Slurm 

might provide the following program names for them: «wrap-

414», «wrap-5020», «wrap-0103». The first two names might 

correspond to some real program P1 and the last to a real program 

P2. Thus the real program name is hidden. 
The names are so strange because often users ask 

supercomputer to run bash script as a program, and those scripts 
are in turn run real program images. Slurm encodes script names 
as «wrap_NN» for some reason. 

Respectively, the following question arose: how task’s visual 
representation might help us to find programs with NFS spikes? 
Or at least, which representation method we might use for 
visualization of tasks? 

3. Solution using grouping 

The stated problem has been solved by the following.  

We used our background observation: for almost all time 

each user runs only a few programs that are often unique. For 

example, a user N1 usually spawns only program P1, a user N2 

spawns only programs P1 and P2, and user N3 spawns only P3. 

This observation allowed us to change our visualization idea: 

instead of focusing on programs, we may focus on users. 

In contrast with the idea of visualizing per-program activity, 

the per-user activity is possible to compute. It allows determining 

users who cause NFS spikes and further analyze their programs 

manually.  

In comparison with the attempt for visualization of tasks, the 

mentioned approach seems to be simpler, since working with 

users, which is about 200 in our case, is much convenient than 

the number of tasks. 

We constructed the following view, figure 2: 
 

Fig. 2. NFS activity of supercomputer users  

during 2-weeks period. 
   

1. The time goes from the bottom to the top. 

2. Each column corresponds to a user of the supercomputer. 

3. The width of the column at each specific time is 

determined by the value of function nfs_activity_u(user,time)→ 

int, e.g. the total count of NFS operations generated by all of the 

running tasks of that user at that time. 

Additionally, users' columns were sorted by the sum of NFS 

usage. The motivation for that idea was to visually emphasize 

most active users and group them. This "group" was under 

suspicion as a source of storage problems and thus was subject 

to manual investigation. Now we saw this group visually. 

We found the stated view as interesting and informative. It 

allowed us to determine the most NFS-active users and their 

programs. But this was not the end of the story. 

4. Enhancing the view 

During visualization research, we conducted more steps than 

stated above.  

We added 3D graphics for the view, and camera 

manipulation tools such as zooming, movement, and rotation 

were used. It allowed us to get extra angles of view to data. It 

also provided an ability to use another visual method - view of 

function graphs (see below) simultaneously with columns view. 

Figure 3 illustrates this effect. 

We added visualization for summarized supercomputer 

activity over time:  

– total number of running tasks at supercomputer, 

– total count of NFS operations at supercomputer, 

– amount of running tasks, 

– amount of used CPUs of supercomputer, 

– duration of empty file creation. 

The meaning of this data is obvious with except of last one. 

We constructed special test for our NFS storage: create empty 

file and delete it, and measure the time used by that operation. 

We started to run it every few seconds and collect times. This 

measurement occurred to be very expressive for registering 

storage lagging. Sometime, this operation performed for more 

than tens of seconds! 

The example of summarized activity is presented on the left 

side in figure 3 as graphs. We decided to show them as function 

graphs, to visually emphasis the difference of this data in contrast 

with user’s activity (which is shown as columns). 
 

Fig. 3. Summarized supercomputer activity and  

per-user NFS activity in a 3D view. 
 

Also we added an ability for an investigator to highlight time 

moments on the view when summarized activity meets some 

criteria. For example, in figure 3 the red lines depict time 

moments when empty file creation lasted more than 10 seconds 

for 2 minutes. This example is crucial – it means that NFS storage 

naturally hanged. 

In common, the criteria used for highlighting is the 

following: whenever selected column of summarized activity is 

more or less than specified constant for specified number of 

sequential probe values. This was enough for our aims. 

Another option we added is an ability to perform multiple 

highlights, one with red, and another with green or blue. For 

example, we were able to highlight moments of slow empty file 

creation with red color and moments with huge NFS operations 

count with green color. It was nice to visually see correlation 

between these highlights, displayed simultaneously. 

Working with this highlights opened an unexpected 

observations and conclusions on our problem, described in the 

following section. 

5. Unexpected observations 

One may look at figure 2 or 3 and decide that most active users 
(with fat columns) are “guilty” in NFS storage hangs. But that 
occurred not to be true. Figure 4 illustrates that. 

Only user activities are shown. Time goes from right to left. 
The time moments when NFS storage hangs are depicted by grey 
lines. The corresponding per-user NFS activities, during storage 
hangs, are highlighted with purple color.  

Naturally speaking, all the users whose columns contain purple 
color had contributed to storage hangs. 

 



Fig. 4. NFS activities of users making contribution to storage 
hang are highlighted with purple. 

 

The figure visually explains that not only most NFS-active 

users are contributing to storage hang, but a lot of users, even 

lesser-active (located most far at the figure).  

We concluded: storage problems are a result of a 

combination of contributions from various users, and this 

combination is different from time to time. 

Considering the formula “one user = few unique programs”, 

it means that there are no problematic programs subset, as we 

considered at the beginning of our research. The roots of the 

problem are that all programs perform NFS operations 

simultaneously, and their total activity sometimes excess limits 

leading to storage hang. 

The set of programs caused storage problems each time 

seems to be different. At least it is not connected with most-active 

NFS users. Probably, there are other patterns that we have not 

determined yet. 

One interesting part of this section is the following. Using 

purple highlight of users, we achieved visual representation of 

problematic time moments and their participants, e.g. reasons for 

the problems. It means that we achieved a visual method of 

solving our task (of finding programs causing NFS lags).  

Of course, we performed extra computations that gave us the 

same conclusions numerically. But also we achieved that 

visualization has “computed” the result for us. 

We find such cases when visualization makes an answer 

obvious (to human) as very remarkable. A great example of such 

a case is a functions graphs y=f(x): when it crosses the OX axis 

it corresponds to “roots” of function’s solution and these roots 

are visually obvious to an observer. 

An important detail in our case was the coloring of a user’s 

columns (in contrast to just highlighting time moments by grey 

lines). If a user has valuable NFS activity at a problematic 

moment, his column is visually emphasized. Please note that in 

figure 4 if some user has small NFS activity at problematic 

moments, his column is visually not emphasized due to 

corresponding small shape, even still colored.  

We see here that it was required to perform additional visual 

representation changes so human become able to detect what he 

needs to. And in turn, after that we didn't need any further steps: 

visualization began to work. 

If the illustrated approach will be successful, an interesting 

theoretical question arises: which visual adjustments should we 

make to visual representations to make them provide “obvious” 

answers to questions valuable to a human? 

6. Technical background 

The visualization was created using web technologies, 

including WebGL. A 3D visualization framework Viewlang.ru 

was used for graphics programming. It allows programmer to 

specify objects like Lines, Points, Spheres, Triangles, etc, and 

then Viewlang translates them into WebGL calls. Thus all the 

graphics was programmed in Javascript in reactive fashion. 

The data is divided into month slices. One-month view was 

considered as enough for our research. On the visualization index 

page, a user selects which month he wants to be visualized and 

visualization is launched, parametrized by the month selected. 

In experimentation purposes, we spawned visualizations in 

Virtual Reality mode using WebVR. We used Oculus Rift DK2 

headset for this. It was nice to see the stated views in VR mode. 

7. Conclusion 

The presented problem and the solution demonstrates the 

transformation of the initial visualization idea into a simple and 

more descriptive presentation. 

We had a final goal – visually find programs that cause NFS 

spikes. We had obtained information about tasks from the 

supercomputer's scheduler. Our initial idea was to visualize these 

tasks and their NFS activity. But we had no way to associate tasks 

with programs, due to limitations in scheduler software. So this 

effort looked as useless in terms of the final goal. 

And then we found out that there is no need to visualize tasks. 

Instead, we had synthesized new objects – the “NFS activity of 

users”. We redirected our view on tasks from per-program to per-

user basis. Thus tasks were regrouped. 

It was reasonable due to our preliminary knowledge that each 

user runs a small subset of programs, different from other users. 

A lot of users run just one self-written program. Furthermore, the 

number of users of the supercomputer is much less than the 

number of tasks executed each month. So the visualization had 

become easier – both in implementation and understanding. 

The focus of an investigator’s mind was also transformed. 

Instead of thinking in terms of original objects, it was moved to 

think about new ones. Instead of thinking about “bad programs”, 

we started thinking about “bad users”. 

The final of our story is tricky. We found out that there were 

no “bad users”. The overload of supercomputer’s storage was 

caused at time moments when some subset of users together 

generated an NFS spike. This subset was not stable. Individually, 

each spike has its specific subset of users who contributed NFS 

load and thus generated that spike. 

We consider the presented case as pretty remarkable to share 

with the community in order of our common efforts in the 

evolution of visualization theory and practice. 
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